A Two-Stage Plug-In Bandwidth Selection and Its Implementation in Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation

نویسنده

  • Masayuki Hirukawa
چکیده

The performance of a kernel HAC estimator depends on the accuracy of the estimation of the normalized curvature, an unknown quantity in the optimal bandwidth represented as the spectral density and its derivative. This paper proposes to estimate it with a general class of kernels. The AMSE of the kernel estimator and the AMSE-optimal bandwidth are derived. It is shown that the optimal bandwidth for the kernel estimator should grow at a much slower rate than the one for the HAC estimator with the same kernel. A solve-the-equation implementation method is also proposed. Finite sample performances are assessed through simulations. JEL Classification: C12, C22, C32.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bandwidth Selection for Spatial Hac and Other Robust Covariance Estimators

This research note documents estimation procedures and results for an empirical investigation of the performance of the recently developed spatial, heteroskedasticity and autocorrelation consistent (HAC) covariance estimator calibrated with different kernel bandwidths. The empirical example is concerned with a hedonic price model for residential property values. The first bandwidth approach var...

متن کامل

Spatial Heteroskedasticity and Autocorrelation Consistent Estimation of Covariance Matrix

This paper considers spatial heteroskedasticity and autocorrelation consistent (spatial HAC) estimation of covariance matrices of parameter estimators. We generalize the spatial HAC estimators introduced by Kelejian and Prucha (2007) to apply to linear and nonlinear spatial models with moment conditions. We establish its consistency, rate of convergence and asymptotic truncated mean squared err...

متن کامل

Heteroskedasticity-Autocorrelation Robust Covariance Estimation Under Non-stationary Covariance Processes

The need to estimate variance-covariance matrix in a time series regression arises often in economic applications involving macroeconomic or finance data. In this paper, we study the behavior of two most popular covariance matrix estimators, namely the Kiefer, Vogelsang and Bunzel kernel estimator without truncation (Kiefer, Vogelsang and Bunzel 2000, KVB thereafter) and standard consistent ker...

متن کامل

Wavelet-based Estimation of Heteroskedasticity and Autocorrelation Consistent Covariance Matrices

As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional to a spectral density matrix at frequency zero and can be consistently estimated by such popular kernel methods as those of Andrews-Newey-West. In practice, it is di¢cult to estimate the spectral density matrix if it has a peak at frequency zero, which can arise when there is strong autocorre...

متن کامل

Econometric Computing with HC and HAC Covariance Matrix Estimators

Data described by econometric models typically contains autocorrelation and/or heteroskedasticity of unknown form and for inference in such models it is essential to use covariance matrix estimators that can consistently estimate the covariance of the model parameters. Hence, suitable heteroskedasticity-consistent (HC) and heteroskedasticity and autocorrelation consistent (HAC) estimators have ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004